The Exact Degree of Precision of Generalized Gauss-Kronrod Integration Rules

نویسندگان

  • Philip Rabinowitz
  • PHILIP RABINOWITZ
چکیده

It is shown that the Kronrod extension to the «-point Gauss integration rule, with respect to the weight function (1 x2)V~"2, 0 < M < 2, ju i= 1, is of exact precision 3n + 1 for n even and 3n + 2 for n odd. Similarly, for the (n-t-l)-point Lobatto rule, with — V¡ < M < 1, u ^ 0, the exact precision is 3n for n odd and 3n + 1 for n even.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree optimal average quadrature rules for the generalized Hermite weight function

Department of Mathematics, University of Gaziantep, Gaziantep, Turkey e-mail address : [email protected] Abstract For the practical estimation of the error of Gauss quadrature rules Gauss-Kronrod rules are widely used; but, it is well known that for the generalized Hermite weight function, ωα(x) = |x|2α exp(−x2) over [−∞,∞], real positive Gauss-Kronrod rules do not exist. Among the alternati...

متن کامل

Quadrature rules for rational functions

It is shown how recent ideas on rational Gauss-type quadrature rules can be extended to Gauss-Kronrod, Gauss-Turr an, and Cauchy principal value quadrature rules. Numerical examples illustrate the advantages in accuracy thus achievable. 0. Introduction The idea of constructing quadrature rules that are exact for rational functions with prescribed poles, rather than for polynomials, has received...

متن کامل

Error estimates for Gauss–Turán quadratures and their Kronrod extensions

We study the kernel Kn,s(z) of the remainder term Rn,s( f ) of Gauss–Turán–Kronrod quadrature rules with respect to one of the generalized Chebyshev weight functions for analytic functions. The location on the elliptic contours where the modulus of the kernel attains its maximum value is investigated. This leads to effective L∞-error bounds of Gauss–Turán–Kronrod quadratures. Following Kronrod,...

متن کامل

Gauss-Kronrod Integration Rules for Cauchy Principal Value Integrals

Kronrod extensions to two classes of Gauss and Lobatto integration rules for the evaluation of Cauchy principal value integrals are derived. Since in one frequently occurring case, the Kronrod extension involves evaluating the derivative of the integrand, a new extension is introduced using n + 2 points which requires only values of the integrand. However, this new rule does not exist for all n...

متن کامل

Computation of Gauss-kronrod Quadrature Rules with Non-positive Weights

Recently Laurie presented a fast algorithm for the computation of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. We describe modifications of this algorithm that allow the computation of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real nodes and positive and negative weights.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010